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Abstract

This paper describes the geometric optimization of the internal structure of a volume that generates heat at every
point and is cooled by a single stream. According to the constructal method, the optimization of the cooling design
is organized in a sequence of steps that begins with the smallest volume element and continues with larger

assemblies (constructs) of previously optimized building blocks. Optimized at each level of assembly are the external
shape of the construct and the relative thickness of each duct for ¯uid ¯ow. It is shown that in the end the ¯uid
channels form a tree network that cools every point of the given volume. Length scales smaller than the thickness of
the elemental volume are reached by conduction through the solid heat-generating material. Two ¯uid channel

geometries are optimized: parallel-plate channels and round tubes. 7 2000 Elsevier Science Ltd. All rights reserved.

1. The problem of volumetric cooling by convection

Constructal tree networks are ¯ow paths deduced
from one principle: the minimization of the global re-

sistance to ¯ow between a single point (source, or
sink) and a ®nite-size volume, subject to global and
local constraints [1]. Resistance minimization is per-

formed consistently at every volume scale, and is sub-
jected to the constraints of ®xed total volume, ®xed-
volume fraction allocated to channels (tree links), and

local temperatures that must not exceed the hot-spot
limit. The medium is heterogeneous: the resistance to
¯ow through the channels is considerably smaller than
the resistance to ¯ow through the material that ®lls the

spaces between channels. Access between the single
point and every point of the ®nite-size volume is made
eventually through the di�usive-type ¯ow that bathes

the interstitial spaces.

The constructal optimization of volume-to-point
access was ®rst proposed in the context of pure heat
conduction [1], where the channels are inserts of high
thermal conductivity in a background medium (the

interstitial material), which has lower thermal conduc-
tivity. The volume generates heat at every point, and is
cooled from a single point (the sink). The method was

since extended to ¯uid ¯ow [2], by recognizing the het-
erogeneity associated with low-resistance ¯ow through
tubes embedded through a di�usive material with

higher resistance (e.g., Darcy ¯ow). Additional demon-
strations and extensions of the method are reviewed
in [3].
The method has its origin in the cooling of elec-

tronics, even though it has diverse applications that go
beyond heat transfer, e.g., physiology, river mor-
phology, and electrical engineering. Its development

was stimulated by the trend toward minituarization of
electronics cooling [4±7]. An essential contribution of
recent advances in electronics cooling was to show that

the global thermal resistance of a heat-generating
volume can be optimized geometrically. The heat-¯ow
path can be arranged optimally in space: this is a uni-
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fying characteristic of some of the most fundamental

contributions to the cooling of electronics [8±10].

In this paper, we consider a fundamentally new ap-

plication of the constructal method: the cooling of a

solid heat-generating volume when the channels (the

tree links) are ducts with ¯uid ¯ow, not high-conduc-

tivity solid inserts. The optimization will balance the

conduction through the solid interstices with the con-

vection along the ducts. Out of this balance, the in-

ternal architecture of the volume with tree channels for

volumetric cooling will result. The present problem

may be viewed as a superposition of the pure heat con-

duction [1] and pure ¯uid ¯ow [2] problems proposed

earlier.

The fundamental problem proposed in this paper

can be stated with reference to Fig. 1. The two-dimen-

sional space HL generates heat volumetrically at the

rate q 000 (W/m3), which is uniform. The temperature in

this space cannot exceed a prescribed level, Tpeak: The

coolant is a stream of single-phase ¯uid _m 0 (kg/s m)

and initial temperature T0: The objective is to cool

every point of the volume, to maximize the overall

thermal conductance q 000HL=�Tpeak ÿ T0�, and to

accomplish this task with minimal pumping power.

This new problem and its geometric solution have fun-

damental implications not only in heat transfer (e.g.,

electric windings, electronic packages) but also in bi-

ology and the thermodynamics of nonequilibrium sys-

tems [3]. Additional applications are discussed in

Section 8.
To see the direction of the geometric approach used

in this paper, imagine the ``ultimate'' design in which

the _m 0 stream is distributed uniformly over H, and
¯ows in the L direction while bathing every point of
the HL space. This arrangement requires the use of
two headers (thick black lines in Fig. 1), one upstream,

to spread the _m 0 stream, and the other downstream, to
reconstitute the _m 0 stream. It also requires a suf-
®ciently re®ned porous structure (e.g., set of small par-

allel channels) through which the stream sweeps the
entire HL space, from left to right. Such a ¯ow sweeps
the hot spots of the heat generating material �Tpeak� to
the right extremity of the HL space. When the porous
structure is su�ciently ®ne, the peak temperature of
the material is approximately the same as the peak
bulk temperature of the permeating ¯uid. The latter

occurs in the exit plane, such that the ®rst law for the
HL control volume can be written as

_m 0cP

ÿ
Tpeak ÿ T0

� � q 000HL �1�

This form is correct if the coolant exhibits ideal gas

behavior with nearly constant cP, or incompressible
¯uid behavior with moderate pressure changes. Eq. (1)
shows that the overall conductance q 000HL=�Tpeak ÿ T0�
is synonymous to the capacity ¯ow rate _m 0cP: In an
electronic package (HL ), the largest amount of cir-
cuitry installed �q 000� and the highest permissible tem-

Nomenclature

A area, m2

cP speci®c heat at constant pressure, J/kg K
C constant, Eq. (28)

D thickness of ¯uid channel, m
H volume height, m
k0 solid thermal conductivity, W/m K

L volume length, m
_m 0 mass ¯ow rate per unit length, kg/s m
_m 00 mass ¯ow rate per unit area, kg/s m2

M dimensionless mass ¯ow rate, Eq. (4)
M̂ dimensionless mass ¯ow rate, Eq. (40)
n number of constituents
Nu Nusselt number

PH high pressure, Pa
PL low pressure, Pa
q 000 volumetric heat generation rate, W/m3

t1 thickness, m
T temperature, K
T0 initial ¯uid temperature, K

Tw wall temperature, K
V volume, m3

x longitudinal coordinate, m

Greek symbols

DP pressure drop, Pa
n kinematic viscosity, m2/s
f volume fraction allocated to ¯uid channels

Superscripts

Ä dimensionless notation, Eq. (3)

Ã dimensionless notation, Eq. (39)

- average, Eq. (29)

Subscripts

0 elemental volume
1 ®rst construct
2 second construct

m minimized once
mm minimized twice
opt optimum

out outlet
peak peak, hot spot
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perature are dictated by materials, manufacturing and

electrical engineering considerations. Once ®xed, the
overall thermal conductance ®xes the coolant ¯ow
rate, or the distributed bathing ¯ow rate _m 00 � _m 0=H:
In summary, the ultimate design described by Eq.

(1) is a constant- _m 00 design that would require a ®ne
structure and, necessarily, a high pressure drop. In the

following analysis, we investigate the possibilities of
meeting the objectives of Eq. (1) by using ¯ow paths
with smaller pressure drops, and with hot spots that
are distributed more uniformly over the volume. We

base this search on the recently demonstrated construc-
tal method [1±3], which showed that paths with lower
overall resistance are achieved when their geometry

(layout) is optimized, and when their internal complex-
ity is increased. Such paths form tree networks.

2. The elemental volume

Regardless of which ¯uid-¯ow network is chosen,
the ®rst leg of the path followed by the ¯ow of heat

will always be one of conduction (thermal di�usion)
through the solid heat generating material. An elemen-
tal volume scale exists where the heat conducted out of

the material is swept away by the ®rst stream of cool-
ant. This smallest scale is called elemental volume, and
is represented by the rectangle H0L0 shown in Fig. 2.
Only one ¯uid channel �D0� penetrates this volume.

The smallness of the elemental size (the area A0 �
H0L0� is ®xed by manufacturing considerations:
smaller H0L0 sizes lead to better designs. The external

shape �H0=L0� and the internal opening �D0=H0� are
the two degrees of freedom of the elemental geometry.
All the heat generated inside the elemental volume

�q 000H0L0� is convected away by the elemental stream
that ¯ows through the D0 channel. The ¯ow rate of
this stream is _m 00 � _m 00H0, where _m 00 is a constant. In

Fig. 2, the rectangular boundary H0 � L0 is assumed

to be adiabatic with the exception of the coldest spot
�T0� that occurs in the immediate vicinity of the inlet
to the D0 channel. The hot spots �Tpeak� occur in the

two corners that are situated farthest from the inlet.
An analytical expression for the peak excess tem-

perature �Tpeak ÿ T0� can be developed when k0 is

small, and the aspect ratio H0=L0 is su�ciently smaller
than 1 such that the conduction through the heat-gen-
erating material �k0� is oriented perpendicular to the
¯uid channel. If we also assume that D0 � H0, the

temperature drop between the hot-spot corner �Tpeak�
and the wall spot near the channel outlet in Fig. 2 is
Tpeak ÿ Tw � q 000H 2

0=�8k0�, in accordance with the

steady-conduction analysis reported in [1]. The increase
experienced by the bulk temperature of the stream
from inlet to outlet is Tout ÿ T0 � q 000H0L0=� _m 00cP�:
There is also a temperature di�erence between the bulk
temperature Tout and the duct wall temperature �Tw� in
the plane of the outlet: temperature di�erences of this

kind are neglected in this study based on the assump-
tion that the ¯ow is fully developed and the channel
spacing is su�ciently small. The necessary validity con-
dition is discussed in the last paragraph of this section.

In conclusion, the peak excess temperature is given
by a two-term expression �Tpeak ÿ T0 � �Tpeak ÿ Tw� �
�Tw ÿ T0�� that can be nondimensionalized in the form

of the overall resistance of the elemental volume,

D ~T0 �
~H0

8 ~L0

� 1

M ~H0

�2�

whereÿ
~H0, ~L0

�
� �H0, L0 �

A1=2
0

D ~T0 � Tpeak ÿ T0

q 000A0=k0
�3�

M � _m 00cPA
1=2
0 =k0, constant �4�

Fig. 1. Space with uniform volumetric heat generation and unidirectional permeating ¯ow.
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In this notation, the size constraint H0L0 � A0

becomes ~H0
~L0 � 1: The right-hand side of Eq. (2)

is equal to � ~H
2

0=8� � 1=�M ~H0�, and shows that the
overall resistance D ~T0 can be minimized with respect
to the external shape parameter ~H0: The results are

~H0, opt �
�

4

M

�1=3

~L0, opt �
�
M

4

�1=3

�5�

�
H0

L0

�
opt

�
�

4

M

�2=3

D ~T0, min � 3

25=3M2=3
�6�

The optimal external shape �H0=L0�opt, which is

independent of the channel size D0, is worth noting.
The elemental volume is more elongated when the
¯ow parameter M is large, i.e., when _m 00 and A0

are large and k0 is small. The starting assumption
that H0=L0 < 1 means that the above solution is
valid when M > 4: The assumption that Tw ÿ Tout is
negligible (relative to Tpeak ÿ Tw� means that

D0=H0 � Nuk=k0, where k is the thermal conduc-
tivity of the ¯uid and Nu is a dimensionless con-
stant of order 1 (the Nusselt number for fully

developed laminar ¯ow in a parallel-plate channel).
This last inequality comes from writing Tw ÿ Tout �
Tpeak ÿ Tw and the de®nitions Nu � 2D0h=k, h �
q 00=�Tw ÿ Tout� and q 00 � q 000H0=2:

3. The ®rst construct

The original space HL of Fig. 1 can be ®lled with
the necessary number �HL=A0� of elemental volumes

of the type that was optimized in the preceding section.
The remaining question is how to connect these build-

ing blocks so that each is bathed by a portion of the
original stream _m 0: The challenge is to connect the el-
ements in a way that minimizes the overall pressure
drop experienced by the _m 0 stream.

The ®rst step in this direction is shown in Fig. 3. We
take a number �n1� of elemental volumes and stack
them into a ®rst construct of dimensions H1 � L0, opt

and L1 � n1H0, opt: The elements are fed with cold ¯uid
from a channel of length L1 ÿH0=2 and thickness
D1=2: A similar channel collects the elemental streams

and reconstitutes the total stream of the ®rst construct,
_m 01 � n1 _m 00:
The total pressure di�erence between inlet and outlet

of the ®rst construct is

DP1 � DP0 � DPD1=2 �7�

If the ¯ow through each elemental channel is in the
Hagen±Poiseuille regime, the pressure drop across one

elemental volume is DP0�12nL0; opt _m 00=D
3
0: The second

term in Eq. (7) refers to the pressure drop along one
of the D1=2-wide channels. For reasons that will be
made clear in the next section, the outer side of each

D1=2 channel is modeled as a zero-shear surface. The
¯ow through the D1=2 channel is also in the Poiseuille
regime. When n1 is su�ciently large, the ¯ow rate var-

ies linearly along the channel, from the total value _m 01
at one end, to zero at the opposite end. Under these
circumstances, it can be shown that the pressure drop

integrated along the D1=2 channel is equal to
12nL1 _m 01=D

3
1: The total pressure drop formula (7) can

be rewritten as a dimensionless overall ¯ow resistance

Fig. 2. Elemental volume with heat generation, conduction, and single-stream cooling.
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D ~P1 � DP1A0

12n _m 01
�

~L0, opt

n1 ~D
3

0

� n1 ~H0, opt

~D
3

1

�8�

Consider now the e�ect of the number of constituents

�n1� on the overall resistance of the ®rst construct.
Both DP1 and _m 01 increase as n1 increases. The interest-
ing e�ect is that there is an optimal n1 Ð an optimal

size Ð for minimal resistance at the ®rst construct
level,

n1, opt �
�
L0

H0

�1=2

opt

�
D1

D0

�3=2

�9�

D ~P1, min � 2

�
A0

D1D0

�3=2

�10�

In this ®rst optimization step, resistance minimization
is achieved through optimal growth, i.e., through the
aggregation of an optimal number of elements. The ex-

pression for D ~P1, min can be minimized further by
increasing D1 and D0: These changes are not without
limits, because the space occupied by ¯uid channels is

taken away from space that could have been occupied
by heat generating material. We account for this limi-
tation through a total ¯uid volume constraint,

A1, fluid � n1D0L0, opt � 2
D1

2
L1 �11�

where A1, fluid is a speci®ed (small) fraction of the total
volume of the ®rst construct, f1 � A1, fluid=�H1L1�: The

¯uid-volume constraint (11) becomes

f1 �
D0

H0, opt

� D1

L0, opt

, constant �12�

The minimization of the D ~P1, min expression (10) with
respect to either D1 or D0, and subject to the con-
straint (12), yields

D0, opt � f1

2
H0, opt D1, opt � f1

2
L0, opt �13�

�
D1

D0

�
opt

�
�
M

4

�2=3 �
H1

L1

�
opt

�
�
M

4

�ÿ2=3

D ~P1, mm � 16

f3
1

�14�

The subscript `mm' indicates that the overall resistance
D ~P1, mm has been minimized twice. Combining
�D1=D0�opt with Eqs. (9) and (6), we ®nd the optimal

number of constituents in the ®rst construct,

n1, opt �
�
M

4

�4=3

�15�

Since the analysis is valid for M� 4 (Section 2), we
conclude that n1, opt � 1, and in this way, we validate
the assumption on which Fig. 3 was based.

Fig. 3. First construct containing n1 elemental volumes.

A. Bejan, M.R. Errera / Int. J. Heat Mass Transfer 43 (2000) 3105±3118 3109



F
ig
.
4
.
S
ec
o
n
d
co
n
st
ru
ct

co
n
ta
in
in
g
n
2
®
rs
t
co
n
st
ru
ct
s:
u
n
if
o
rm

-t
h
ic
k
n
es
s
ch
a
n
n
el
s
(t
o
p
),
a
n
d
ta
p
er
ed

ch
a
n
n
el
s
(b
o
tt
o
m
).

A. Bejan, M.R. Errera / Int. J. Heat Mass Transfer 43 (2000) 3105±31183110



4. The second construct

Even larger portions of the original volume of Fig. 1
can be ®lled by connecting together a number �n2� of
®rst constructs optimized in the preceding section. The

resulting geometry is the second construct shown in
Fig. 4, where H2L2 � n2H1L1, H2 � L1 and L2 �
n2H1: Note the alternating pattern in which we added

®rst constructs to Fig. 4: this time, we ``¯ipped'' the
design of Fig. 3 so that in the second construct two
D1=2-wide channels come together to form a single D1-

wide channel. The midplane of each D1 channel is the
outer (zero-shear) surface modeled in the preceding
section.
The total ¯ow rate of the second construct is equal

to the sum of the ¯ow rates handled by the ®rst con-
structs, _m 02 � n2 _m 01: The _m 02 stream is ®rst distributed
and, later, collected by channels of length L2 and

width D2=2: The outer planes of the two D2=2 channels
are modeled as zero-shear surfaces. The total pressure
drop experienced by the _m 02 stream is

DP2 � DP1, mm � DPD2=2 �16�

where DP1, mm can be derived from Eq. (14). The sec-
ond term on the right-hand side of Eq. (16) can be de-

rived by making the same assumptions as for DPD1=2

in the preceding section, and the result is 12nL2 _m 02=D
3
2:

The nondimensional resistance that follows from Eq.
(16) is

D ~P2 � DP2A0

12n _m 02
� 16

n2f
3
1

� n2H1A0

D3
2

�17�

The minimization of D ~P2 with respect to n2 yields

n2, opt �
 

16D3
2

f3
1A0H1

!1=2

�18�

D ~P2, min � 8�M=4�1=6
~D
3=2

2 f3=2
1

�19�

where ~D2 � D2=A
1=2
0 : The second minimization of the

overall ¯ow resistance is conducted subject to the total
¯uid space constraint

A2, fluid � n2A1, fluid � 2
D2

2
L2 �20�

Let f2 be the speci®ed ¯uid-volume fraction in the sec-
ond construct, f2 � A2, fluid=�H2L2�: The nondimen-

sional version of Eq. (20) is then

f2 � f1 �
4

M
~D2, constant �21�

The minimization of D ~P2, min with respect to ~D2 and
f1, and subject to the constraint (21), yields

f1, opt �
f2

2
~D2, opt � M

8
f2 �22�

D ~P2, mm � 512

21=3M4=3f3
2

�23�

In view of Eq. (18) and the double optimization per-
formed in the preceding section, the optimized second
construct is also characterized by

n2, opt � 4

�
M

4

�4=3

� 4n1 �24�

�
H2

L2

�
opt

� 1

2

�
D1

D2

�
opt

� 1

4

�
4

M

�2=3

� 1

4

�
H1

L1

�
opt

�25�

5. Optimally tapered ¯ow channels

In the analyses presented in Sections 3 and 4, we

assumed that the central channel of each new construct
has a uniform thickness, D1 and, respectively, D2: We
made this choice for the sake of simplicity, in order to

highlight each step of assembly (growth, aggregation),
which is followed by geometric optimization. The con-
stant-thickness assumption is not compatible with the

requirement that the collecting channel must receive a
uniform ¯ow rate per unit channel length. To see why,
recall that in the ®rst construct of Fig. 3, the ¯ow rate
must be the same through each D0 channel, and, con-

sequently, the ¯ow rate through each D1=2 channel
must vary linearly along L1, from _m 01 to zero,

_m 01, x � _m 01

�
1ÿ x

L1

�
�26�

This expression refers to the top D1=2 channel of

Fig. 3, where x � 0 marks the entrance. The local
pressure gradient along this channel is

ÿdPH

dx
� 24n

_m 01, x
D3

1

�27�

The distribution of high pressure PH�x� depends on the
function D1�x�, which must be determined. If D1 is a
constant, then PH�x� has a parabolic shape. If D1 is

tapered as �1ÿ x=L1�1=3, then PH�x� varies linearly as
shown with solid lines in Fig. 5.
Relations similar to Eqs. (26) and (27) hold for the

distribution of low pressure, PL�x�, along the receiving
D1=2 channel. The pressure di�erence that drives the
¯ow through each elemental �D0� channel is PH�x� ÿ
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PL�x�: The elemental ¯ow rate is independent of x only

when PH�x� ÿ PL�x� is a constant, i.e., when PH�x� and
PL�x� vary linearly. In conclusion, the ratio _m1, x=D

3
1

must be a constant in Eq. (27) and, in view of Eq.

(26),

D1�x� � C

�
1ÿ x

L1

�1=3

�28�

The constant C accounts for the volume of the D1

channel, or for the result of averaging D1�x� from x �
0 to L1,

�D1 � 1

L1

�L1

0

D1�x� dx � 3

4
C �29�

The pressure drop along the channel length L1, which
results from Eq. (27), is

DPH

L1
� 81

8
n

_m 01
�D
3

1

�30�

The optimal power-law tapering of the channel, Eq.
(28), applies to every subsequent-level channel that
must receive uniform ¯ow rate per unit length. The

lower part of Fig. 4 shows the tapered versions of D1�x�
and D2�x�, which can be compared directly with the
uniform-D1 and -D2 drawing shown in the upper part
of the ®gure. The optimal dimensions and aspect ratios

of the constructs with tapered collecting channels agree
closely with the results presented in Sections 3 and 4.
The analysis can be repeated by starting with the line

above Eq. (8), in which the pressure drop along the
D1=2 channel of the ®rst construct �12nL1 _m 0=D3

1, or Eq.
(27)) is now replaced by 2�3=2�4n _m 01= �D

3

1, cf. Eq. (30). In

other words, the place of D1 is taken by �D1, and the
factor 12 is replaced by 2(3/2)4. The main features of
the optimized ®rst construct are now described by

 
�D1

D0

!
opt

�
�
M

4

�2=3

�
H1

L1

�
opt

� 21=2
�
3

4

�3=2�
4

M

�2=3
�31�

n1, opt � 2ÿ1=2
�
4

3

�3=2�
M

4

�4=3

D ~P1, mm � 21=2
�
3

4

�3=2
16

f3
1

�32�

These results can be compared with Eqs. (14) and (15)

to see the close agreement, i.e., that the uniform-D1

analysis is an approximate (and more direct) method
of determining the optimized geometry.

The optimization of the second construct (Section 4)
can be repeated by starting with the line above Eq.
(17), in which 12nL2 _m 02=D

3
2 is replaced by

�81=8�nL2 _m 02= �D
3

2: Eqs. (23)±(25) are replaced by 
�D2

�D1

!
opt

� 27=2

33=2

�
M

4

�2=3

�
H2

L2

�
opt

� 33=2

29=2

�
4

M

�2=3
�33�

n2, opt � 27

33

�
M

4

�4=3

D ~P2, mm � 33

25
512

21=3M4=3f3
2

�34�

Combining the revised analyses of the ®rst and second
constructs, we ®nd that

n2, opt � 25=2

33=2
4n1, opt and

�
H2

L2

�
opt

�
�
2

3

�3=2
 

�D1

�D2

!
opt

� 1

4

�
H1

L1

�
opt

�35�

which agree within 20% with the uniform-(D1, D2)
results of Eqs. (24) and (25).
Fig. 6 shows, in color, the layout of the ®rst, second

and third constructs. Blue indicates colder channels

that bring in the coolant and distribute it through the
given volume. Red indicates the warmed up ¯uid that
is collected and led out of the volume. The elemental

channels change color in the middle, from blue to red,
to suggest that at the elemental level each stream
warms up while absorbing the generated heat that dif-

fuses through the solid, which is shown in yellow. As
the constructs compound themselves, the cooled
volume acquires a structure similar to that of a vascu-

Fig. 5. The pressure distribution along the D1=2-thick chan-

nels of the ®rst construct.
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Fig. 6. Color displays of in¯owing (blue) and out¯owing (red) streams in the ®rst construct (top), second construct (middle), and

third construct (bottom).

A. Bejan, M.R. Errera / Int. J. Heat Mass Transfer 43 (2000) 3105±3118 3113



larized tissue, where one tree network (arteries) meets

another (veins) in every volume element of the tissue.

6. Higher order constructs

The optimization sequence illustrated at three levels

of increasing complexity in the preceding sections (el-
emental volume, ®rst construct, second construct) can
be continued toward constructs of higher order, which

will cover increasingly larger volumes. The analytical
method would be the same as in Sections 3 and 4. The
geometric results too would continue the trends that
became visible as early as the second construct. Speci®-

cally, since this analytical course is valid when
M=4 > 1, each new channel will be larger than the
largest preceding channel size, with a width magni®-

cation factor of order �Di�1= �Di0�M=4�2=3 for ir2: The
stepwise increase in channel width agrees qualitatively
with the behavior of the corresponding solution for

tree networks in pure heat conduction [1].
A trend that goes against the trees of heat conduc-

tion is the stepwise increase in the external slenderness
ratio. In heat conduction, the higher order constructs

were square or close to square. In the present problem,
if we look at Eqs. (6), (31) and (35), we anticipate that
the ratios Hi�1=Li�1 will continue to be of order

�4=M �2=3 < 1, and that they will decrease in small
steps as the constructs become larger. The point±
volume±point ¯ow schemes will have to ®t in more

and more slender spaces, and this will interfere even-
tually with the outer constraints (boundary, shape) of
the total volume that must be cooled. The only course

of action left is to optimize the geometry of the shape-

constrained system numerically, as shown for pure
conduction in [1]. This is why, in this paper, we have
not continued the analytical sequence beyond the sec-

ond construct.
Another trend that is unlikely in pure heat conduc-

tion is shown by the ®rst of Eq. (35): the number of

constituents increases as the order of the construct
increases. In the heat conduction tree, the number of
constituents decreased until it reached 2 (dichotomy).

7. Round tubes

We illustrated the geometric optimization of the
point±volume±point ¯ow path in two dimensions, by

assuming that each channel is a ®ssure with parallel
walls. The same method can be used to optimize de-
signs with channels of round cross-section. The start of

this optimization sequence is based on Fig. 7. The el-
emental level is de®ned by the smallest channel, which
has the diameter D0 and length L0. As elemental
volume we consider the cylinder of diameter H0. Heat

is generated in the solid annulus of thermal conduc-
tivity k0.
To construct the analytical expression for the ther-

mal resistance of the elemental volume, we assume that
H0 < L0, and note that Tpeak ÿ T0 � �Tpeak ÿ Tw� �
�Tw ÿ T0�: The temperature di�erence in the radial

direction is derived from the solution to the problem
of steady conduction in an annular space with uniform
heat generation rate,

Fig. 7. Elemental volume with radial symmetry and round channel.
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The ¯ow rate of the elemental stream is _m0 �
_m 00�p=4�H 2

0: The longitudinal temperature increase ex-

perienced by the stream is

Tout ÿ T0 � p
4

ÿ
H 2

0 ÿD2
0

�
L0q

000=� _m0cP � �37�

Next, we assume that Tout ÿ T0 � Tw ÿ T0, and add
Eqs. (36) and (37). The resulting expression

DT̂0 � L̂0

M̂

H 2
0 ÿD2

0

H 2
0
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has been nondimensionalized by using V 1=3
0 as length

scale, where V0 is the constant volume of the elemental
system, V0 � �p=4�H 2

0L0:ÿ
Ĥ0, L̂0, D̂0

�
� �H0, L0, D0 �

V 1=3
0

DT̂0 � Tpeak ÿ T0

q 000V 2=3
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�39�

M̂ � _m 00cPV
1=3
0 =k0, constant �40�

The volume constraint �p=4�Ĥ2

0L̂0 � 1 and the known

size of the smallest tube �D̂0� leave only one degree of
freedom in the minimization of DT̂0: The free parameter
is L̂0 or Ĥ0, or the slenderness ratio H0=L0: We mini-

mized DT̂0 numerically and obtained the results shown
in Fig. 8. The ratio �H0=L0�opt varies almost as M̂

ÿ1=2
,

which agrees qualitatively with the result for two-

dimensional channels, Eq. (6). The data of Fig. 8 and
the corresponding minimum resistance are, respectively,
correlated within 2 and 1% by the expressions

�
H0

L0

�
opt

� 2:37M̂
ÿ0:556

D̂
0:248

0 �41�

DT̂0, min � 0:575M̂
ÿ0:536

D̂
ÿ0:264
0 �42�

The ®rst construct that can be made with the optimized

elements is shown in Fig. 9. The collected stream _m1

¯ows through half of a channel of diameter D1. The el-
ements form a slab of length L1, height H1 (= L0) and

thickness t1 � H0: The latter is an approximation,
because n1 parallel cylinders do not ®ll a parallelepiped
completely. A better estimate for the slab thickness t1
is obtained from the volume conservation argument

L1H1t1 � n1�p=4�H 2
0L0 and L1 � n1t1, which yields

t1 � �p=4�1=2H0:
The calculation of the pressure drop DP1 across the

®rst construct follows the steps outlined in Section 3.
We assume that D1 and D2 are ®xed during the ®rst
phase of the optimization procedure. The pressure

drop between inlet and outlet of the ®rst construct
(Fig. 9) is DP1 � DP0 � DPD1

=2: The ¯ow is assumed
to be in the Hagen±Poiseuille regime, therefore, the

overall ¯ow resistance is

DP̂1 � DP1pV0

128 _m1n
� L̂0, opt

n1D̂
4

0

� n1
t̂1, opt

D̂
4

1

�43�

The resistance can be minimized by selecting the num-

ber of constituents,

n1, opt �
 
D̂1

D̂0

!2 
L̂0, opt

t̂1, opt

!1=2

�44�

DP̂1, min � 2

t̂1, optD̂
2

0D̂
2

1

�45�

In Eq. (45), we may replace t̂1, opt by �p=4�1=2Ĥ0, opt

to express DP̂1, min as a function of the shape, since

Ĥ0; opt � �4=p�Ĥ0=L̂0�opt�: we ®nd that DP̂1, min varies

nearly as M̂
1=5

for a given D̂0:
Eq. (45) also shows that we may reduce the resist-

ance further by increasing D̂0 and D̂1: These diameters
are related through the ¯uid volume constraint

f1 �
V1, fluid

V1
� p

4
D̂

2

0L̂0, opt � p
4
D̂

2

1 t̂1, opt, constant �46�

The results of minimizing Eq. (45) with respect to D̂0

and D̂1 subject to Eq. (46), are

D̂0, opt � 0:714f1=2
1 Ĥ0, opt �47�

D̂1, opt � 0:7

�
4

p

�3=4

f1=2
1 Ĥ

ÿ1=2
0, opt �48�

Fig. 8. The optimal shape of the elemental volume with round

channel.
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These results can be combined with the Ĥ0, opt relation
obtained at the elemental level (Eq. (41)),

D̂0, opt � 1:04M̂
ÿ0:202

f0:55
1 �49�

D̂1, opt � 0:69M̂
0:101

f0:477
1 �50�

Ĥ0, opt � 1:11M̂
ÿ0:202

f0:045
1 �51�

such that the twice optimized overall ¯ow resistance
becomes:

DP̂1, mm � 3:66M̂
0:404

fÿ2:091 �52�

The other features of the optimized assembly are�
D1

D0

�
opt

� 1:02

�
M̂

4

�0:3

fÿ0:071 �53�

�
H1

L1

�
opt

� 1:21

�
M̂

4

�ÿ0:3
f0:07
1 �54�

n1, opt � 2:01

�
M̂

4

�0:91

fÿ0:2031 �55�

These features agree qualitatively with the results
determined in Eqs. (14) and (15) for the ®rst construct
with parallel-plate channels.

8. Conclusions

In this paper, we extended the constructal method to

systems that are cooled volumetrically by tree networks

of channels with ¯uid ¯ow. The stream of coolant

enters the volume through a single port and exits

through another single port. Every point of the in®nity

of points of the heat generating volume is placed in

contact with the coolant: the generated heat ¯ows ®rst

by thermal di�usion through solid material, before it is

collected by the ®rst (smallest, elemental) stream of

¯uid.

The volume-constrained optimization of the paths

for heat and ¯uid ¯ow began with the smallest volume

element, where a single duct collected the heat current

integrated over the volume. It then continued toward

larger volume scales in a stepwise sequence in which

each larger volume is an assembly (a construct) of pre-

viously optimized smaller volumes. At the elemental

level (Section 2), we found that the external shape of

the volume element can be selected such that the glo-

bal thermal resistance is minimum. Beginning with the

®rst construct (Section 3), two geometric features can

be optimized: the external shape of the construct, or

the number of constituents �n1, n2, . . .), and the ratio

between the thickness of each new central duct and the

thickness of its tributaries �D1=D0, D2=D1, . . .�: The op-

timal tapering of the pro®le of central ducts (Section

5) has only a minor e�ect on the global performance

of the construct.

The existence of these geometric optima is in agree-

Fig. 9. First construct with channels with round cross-section.
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ment with the conclusions reached in the optimization
of tree networks for pure heat conduction [1] and pure

¯uid ¯ow [2]. Unlike in Refs. [1,2], the numbers of
constituents do not decrease to 2 (dichotomy) as the
order of the volume construct increases. The larger

constructs become more slender: this means that if the
largest construct must ®t inside a volume with ®xed
external shape, then the constructal designs developed

in this paper will not necessarily meet this objective. In
such cases, the ®nal stage of the optimization (the
architecture of the largest volume) must be executed

numerically.
Numerical progress can also be made on the

sequence of constructal steps started in this paper. For
example, the elemental system can be optimized nu-

merically in the general case where the simplifying
assumption M > 4 does not apply (see the end of Sec-
tion 2). This unrestricted range of M values is import-

ant for the additional reason that, in it, the optimized
elements and constructs are not necessarily slender
and, consequently, they have a better chance of ®lling

the total volume allocated to the system.
We end with a few clari®cations in response to

suggestions provided by the reviewers of the original

manuscript. In this paper, the two-dimensional geome-
try was used for the sake of simplicity and clarity in
presenting the method. The reason is that the new con-
tent of this paper Ð the tree structure that combines

convection in the channels with conduction in the
interstices Ð is more complicated than the constructal
trees optimized in the past. For this ®rst look at con-

vective trees, we started in the simplest way, and, as
we show in Section 7, we ended with an outline of
how one may extend the constructal method to three-

dimensional con®gurations.
The same approach was used in the reporting of the

constructal method for simpler ¯ows. For pure con-
duction, the ®rst analyses done in two dimensions [1,3]

were followed by an extension to three-dimensional
heat-tree networks [11]. Similarly, the two-dimensional
analyses of pure ¯uid ¯ow between a volume and one

point [3,12±14] were complemented but a construction
in three dimensions [2,3]. The three-dimensional treat-
ment of convective tree structures deserves to be con-

sidered in detail in future studies, perhaps by following
the examples given in Refs. [2,11].
The tapering of parallel-plate channels (Fig. 4, bot-

tom) is a feature required by the uniform distribution
of ¯ow rate through volumes of immediately smaller
scale. It is true that the exact channel shape optimized
in formulas such as Eq. (28) may be di�cult to achieve

in practice, especially the round shape near the narrow
end. The important conclusion is that tapering is
required by (i.e., goes hand-in-hand with) uniform

volumetric bathing. It is also important that the exact
tapering does not make a big di�erence in how the

structure performs: note the similarities between Eqs.
(31) and (32) and Eqs. (14) and (15).

We already commented on the route to larger scales,
and why higher order constructs of the present type
are not likely to ®t in speci®ed overall enclosures. The

incorporation of higher order structures in the design
(i.e., the increase in complexity) will make the system
perform better [15]; however, the higher order struc-

tures may not ®t in the given volume. It is important
to keep in mind that all the length scales start from
the elemental, and that the elemental scale is ®xed.

Trying to ®t constructs of increasing higher order into
a ®xed volume would require a smaller and smaller el-
emental scale.
Examples of engineering systems, where the present

convective trees may ®nd applications, were discussed
in Section 1. One speci®c example is the cooling of an
enclosure ®lled with electronics, in which the coolant

enters as a stream through one port, and exits through
another. Stacks of printed circuits boards installed in
this enclosure will play the role of ®rst constructs, cf.

Fig. 3. Another example was pointed out by one of the
reviewers: the vascular anatomy of the chorioallantoic
membrane, which is a respiratory organ in the embry-

onic chick.
Applications also exist in fuel cells and bio-reactors,

which are systems where reactions occur volumetri-
cally, and the reactions are sustained by streams that

enter and exit through discrete points. For example, a
bio-reactor produces enzymes by solid state fermenta-
tion. Due to metabolism, heat is generated and must

be removed to keep the micro-organisms alive. One
way too cool the solid mass is to insert cooling chan-
nels (cracks). The optimization opportunity arises from

the need to allocate solid mass volume to the cooling
network, in a constrained volume. The channels may
also serve as conveyors of O2 for respiration, if the
process is aerobic.

A possible future application of the constructal
method to the design of convective trees is the develop-
ment of heat transfer models for living tissues. The

way to begin was described by Huang et al. [16], who
assumed two trees of convective tubes (one arterial,
the other venous) almost superimposed, and in coun-

ter¯ow. This tree was embedded in a cube of solid tis-
sue, which was covered by three-dimensional steady
heat conduction. Tube diameters decreased by the

same, assumed factor from one branching stage to the
next. Dichotomy was also assumed: larger tubes were
continued by two smaller tubes. This tree structure has
features in common with the three-dimensional ¯uid

tree deduced (optimized), based on the constructal
method [2,3]. The main di�erence is that in the con-
structal tree the diameter reduction factor and the in-

teger 2 (dichotomy, bifurcation, pairing) were optimiz-
ation results, not assumptions. Huang et al.'s tree
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expires in channels ®lling a ``terminal subvolume'': this
subvolume is equivalent to the ®rst construct de®ned

in the present paper. Another major di�erence is that
Huang et al. did not consider the ¯uid mechanics of
the tree. They did not calculate and minimize the

volume±point resistance to ¯uid ¯ow.
Future work in bioheat transfer may reconsider

Huang et al.'s model based on the constructal method.

The smallest volume would be the elemental volume,
and geometric optimization subject to volume and
void constraints would be performed at every step.

One di�erence, and a good question for future studies
is the assumption of adiabatic contours (boundaries)
for all the constructs described as building blocks in
this paper. In Huang et al.'s model, heat was con-

ducted across what would have been boundaries
between constructs. In the case of pure heat conduc-
tion, we showed by numerical simulations that the

presence of adiabatic internal boundaries between con-
structs has practically no e�ect on the global thermal
resistance of the volume [15].

Acknowledgements

This work was supported by the National Science
Foundation and Conselho Nacional de Desenvolvi-
mento Cienti®co e TecnoloÂ gico (CNPq), Brazil.

References

[1] A. Bejan, Constructal-theory network of conducting

paths for cooling a heat generating volume, Int. J. Heat

Mass Transfer 40 (1997) 799±816.

[2] A. Bejan, Constructal tree network for ¯uid ¯ow

between a ®nite-size volume and one source or sink,

Rev. GeÂ n. Thermique 36 (1997) 592±604.

[3] A. Bejan, Advanced Engineering Thermodynamics, 2nd

ed., Wiley, New York, 1997.

[4] W. Aung (Ed.), Cooling Technology for Electronic

Equipment, Hemisphere, New York, 1988.

[5] G.P. Peterson, A. Ortega, Thermal control of electronic

equipment and devices, Advances in Heat Transfer 20

(1990) 181±314.

[6] S. Kakac, H. YuÈ ncuÈ , K. Hijikata (Eds.), Cooling of

Electronic Systems, Kluwer Academic Publishers,

Dordrecht, The Netherlands, 1994.

[7] R.C. Chu, R.E. Simons, Cooling technology for high

performance computers: IBM sponsored university

research, in: S. Kakac, H. YuÈ ncuÈ , K. Hijikata (Eds.),

Cooling of Electronic Systems, Kluwer Academic

Publishers, Dordrecht, The Netherlands, 1994, pp. 97±

122.

[8] A. Bar-Cohen, W.M. Rohsenow, Thermally optimum

spacing of vertical, natural convection cooled, parallel

plates, J. Heat Transfer 106 (1984) 116±123.

[9] R.W. Knight, J.S. Goodling, D.J. Hall, Optimal thermal

design of forced convection heat sinks Ð analytical, J.

Electronic Packaging 113 (1991) 313±321.

[10] N.K. Anand, S.H. Kim, L.S. Fletcher, The e�ect of

plate spacing on free convection between heated parallel

plates, J. Heat Transfer 114 (1992) 515±518.

[11] G.A. Ledezma, A. Bejan, Constructal three-dimensional

trees for conduction between a volume and one point, J.

Heat Transfer 120 (1998) 977±984.

[12] A. Bejan, M.R. Errera, Deterministic tree networks for

¯uid ¯ow: geometry for minimal ¯ow resistance between

a volume and one point, Fractals 5 (1997) 685±695.

[13] M.R. Errera, A. Bejan, Deterministic tree networks for

river drainage basins, Fractals 6 (1998) 245±261.

[14] M.R. Errera, A. Bejan, Tree networks for ¯ows in por-

ous media, J. Porous Media 2 (1999) 1±18.

[15] A. Bejan, N. Dan, Two constructal routes to minimal

heat ¯ow resistance via greater internal complexity, J.

Heat Transfer 121 (1999) 6±14.

[16] H.W. Huang, Z.P. Chen, R.B. Roemer, A counter cur-

rent vascular network model of heat transfer in tissues,

J. Biomechanical Engineering 118 (1996) 120±129.

A. Bejan, M.R. Errera / Int. J. Heat Mass Transfer 43 (2000) 3105±31183118


